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Abstract .  We consider the dynamics of the n-component Ginzburg-Landau model 
with non-conserved order parameter (model A) following a quench from a high- 
temperature equilibrium state to zero temperature. The two-time cornlation fun0 
tion of the order-parameter field is found in the 1/n expansion to have the asymptotic 
scdngform C b ( t , t ’ )  = t ’ d / 2 ( t / t ‘ ) X / 2  j ( k 2 t , k z t ’ )  for t > t ’ ,  with f(0,O) = constant. 
The form of the new exponent X (which is a nowtrivial function of n and d) was  
given expliatly to O( l /n )  in a recent letter. The purpose of this longer paper is to 
present a more detailed account of the calculation leading to the O( l /n)  form for A .  
We also examine the role of thermal fluctuations in the ordered phase and the effect 
of long-range injtid correlations on the ordering process. 

1. Introduction 

The process of non-equilibrium domain growth is a subject of intense interest [l]. 
Although many physical systems which undergo such a process are described by a 
scalar order parameter there has been much recent interest in the dynamics of do- 
main growth of systems described by a vector order parameter [2-91. In this paper 
we consider the dynamics of the n-component Ginzburg-Landau model following an 
instantaneous quench from a high-temperature equilibrium state to zero temperature. 
The central theme of the paper shall be a l / n  expansion. This is partly due to the lack 
of any other small parameter in which to develop a perturbation expansion, in con- 
trast to working at the critical point where one may also develop an expansion about 
the upper critical dimension. We shall restrict our attention to the case where the 
order parameter is non-conserved (model A). In fact, systems with a conserved order 
parameter (model B) exhibit multiscaling following a zero temperature quench in the 
limit of n -.) 03 [6]. Our main finding is that correlations between the order parameter 
field a t  different times require a new, non-trivial exponent for their description. 

The outline of this paper is as follows. In section 2 we shall define the model 
to be analysed and via a diagrammatic expansion derive the leading order results in 
the limit of n + 03 [2,6,8]. In section 3 we perform a 1/11 expansion about the 
leading order results. This expansion gives rise to the main result of the paper which 
is that a new exponent arises in the description of the two-time correlation function 
Cb(t1t‘) = [4i(t)$ih(t’)] for late times. Here square brackets indicate an average 
over the ensemble of possible initial conditions, and & ( t )  is simply the spatial Fourier 
transform of the vector order parameter field $ = ( $ l ,  ,,,,t#P). The new exponent X 
enters into the correlation function c h ( t (  1 ’ )  in the scaling form [2,3]: 

C h ( t )  2‘) = L ( t ‘ ) d ( ~ ( t ) / ~ ( t ’ ) ) X f o l  k L ( t ’ ) )  t > t‘ (1) 
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where L ( t )  = t ’ I 2  is the characteristic length scale of the system at  time t and f ( 0 , O )  
is a constant. The above expression requires that both t and 1’ are large compared 
with some microscopic timescale t o  (which will appear naturally in the following cal- 
culation). For t’ = 0 the above relation still holds if we replace 1’ by 1, on the RHS. X 
has the following form: 

X = d/2 - (4/3)d’2(2d(d+ 2)/9)B(d/2 + l , d / 2  + l ) ( l / n )  + O(l /n2)  ( 2 )  

where B(z,y) = r(z)r(y)/r(e + y) is the beta function [lo]. We also present 1/n 
corrections to  the scaling function f (z ,  y) .  

Although all the results derived in this paper are calculated explicitly a t  zero 
temperature, one expects them to be valid throughout the ordered phase-the role 
of temperature should be limited to  a renormalisation of the amplitudes for T < T,. 
In section 4 we rederive the n + cm results for general temperature and explicitly 
demonstrate the irrelevance of temperature in the ordered phase. 

In section 5 we examine the effect of long-range initial correlations of the form 
[4;(0)4ik,(0)] = (A/k‘)6,,J !k,.k/ on the ordering process. A physically realizable 
situation of such long-range initial conditions would be a quench from the critical 
point into the low-temperature phase. 

The paper concludes with a discussion of the results. 

2. The model: n -+ do results 

The dynamics governing the non-equilibrium relaxation of the quenched system are 
described by the Langevin equation 

where R(4) has for example the Ginzburg-Landau form 

X(4) = - dde  { - r@ + (V#)* + ( ~ / 2 n ) ( 4 ’ ) ~ } .  2 ‘ J  (4) 

For model A dynamics we take r = 1, whereas r = -V2 for the case of model B 
dynamics. Notice that there is no noise term on the RHS of equation (3) since we 
envisage a quench to  zero temperature. Therefore all averaging will be taken over 
the ensemble of initial conditions. We take for convenience the distribution of initial 
conditions to be Gaussian with zero mean and correlator defined (in terms of Fourier 
components of 4) by 

With the form of Hamiltonian given above, the equation of motion in terms of Fourier 
components of 4 reads as follows 
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Physical quantities of interest to  be obtained from this model are the response 
function 

the two-time correlation function 

C&') = [&(t)&j$)l (8) 

E ( t )  = [ X I .  (9) 

and the energy 

The structure factor, S k ( t )  is simply given by Ck(tr2). As is well known, Sk(t )  often 
has an asymptotic scaling form [l] 

S k ( t )  = W d 9 ( W ) )  (10) 

where L ( t )  - tilz is the characteristic length scale in the system at  time t ( z  is 
the dynamic exponent a t  the zero temperature fixed point [7]) and g(t) is a scaling 
function. We should also note that Gk( t )  is trivially related via integration by parts 
to Ck(t ,  0), i.e. G k ( t )  = Ck(t, O)/A (for the case of Gaussian initial conditions). 

At present there is no available method for solving (6) for general n. Therefore we 
develop a perturbation expansion about the trivially solved Gaussian model ( U  = 0) 
in powers of U.  In this section we shall derive expressions for the above quantities of 
interest in the limit of n -* 00. Setting U = 0 in the equation of motion yields 

4 w  lu=0= 4 m  exp(r - k 2 ) t  3 4"). (11) 

Figure 1. Diagrammatic form of the self-consistent equation (12)  for the response 
function in the limit of n -L w. 

We now construct q5k(t) as an expansion about this result in powers of U. It is 
convenient to  represent the expansion in terms of diagrams [ll] whose rules are easily 
derived from studying explicitly the first few terms in the expansion. To calculate 
G k ( l )  we differentiate the expansion with respect to r&(O) and average over the en- 
semble of initial conditions (whose distribution is defined above). The reason for the 
n -* 00 limit being a soluble case is the following. For each diagram we can attribute 
a definite order in terms of powers of l / n .  Each vertex carries a factor of u/n and each 
closed loop is freely summed over the relevant spin component, therefore contributing 
a factor of n. So a diagram with v vertices and c closed loop is of O ( n C - " ) .  In taking 
the limit of n + 00 only diagrams with the maximal number of closed loops in any 
given order of u/n will survive. We have therefore reduced the infinitely diverse set of 
diagrams to  a much simpler subset which may be resummed to give a self-consistent 
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expression for the response function. In figure 1 we show the Dyson-like equation 
which represents the self-consistent equation for the response function. The circle 
represents the initial correlation of fields (see (S)), the single lines represent g k ( t )  and 
the double lines represent the full response function (in the limit n + CO) Gk( t ) .  
Figure 1 corresponds to the equation 

r t  

Differentiating with respect to t yields a first-order differential equation for G k ( l )  
whose solution may be written in the following form: 

t 
G,,(t) = exp (- 1 dt' {k2 + A(t' ) ) )  

where 

A( t )  = -r + uA G,(t)', 
P 

To determine A(t) we substitute (13) into (14) and perform an unrestricted sum over 
the momentum p .  This yields 

A(t) = -r + uKdAt'd/a exp (-2 4' dt'A(L')) (15) 

where Kd is defined by exp(-2pat) = h ' d / t d / ' ,  In section 4 we shall study an 
equation similar to this in detail in order to determine the precise role of thermal fluc- 
tuations in the ordering process (following a quench to finite temperature within the 
ordered phase). However for the equation above we will concentrate on the asymptotic 
behaviour of A(t) (Le when rt S 1). It  is clear that we require A(t) 4 4 / 4 1  for 
t -+ 00 for consistency. This implies & dt'A(t') -+ -(d/4) In(t/to) for large 1. We have 
introduced the short-time cut-off 1, which characterises the time a t  which the above 
asymptotic behaviour becomes valid. Determining t o  self-consistently from (16) gives 

r = uKdA/t,d". (16) 

G,(t) = (t/to)d/4exp(-b3t). (17) 

We now have the n 3 00 form for the response function 

At leading order the two-time correlation funct\ion is trivially related to the response 
function via Ck(t, t') = AG,,(t)G,,,(t')* We therefore have 

C,,(t,t') = A(tt ' / t~)d~4exp{-ka(t  + t ' ) }  (18) 

for t,t '  S to .  Setting t' = t in (18) reveals that the structure function S,,(t) 
has the expected scaling form (10) at leading order with L ( t )  = tila and g(+) = 
(r/uKd)exp(-2t). Also we notice that BB expected C,, S,(t) = r/u equal to the 
square of the equilibrium magnetisation. 
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It remains in this section to calculate the energy E ( t )  to  leading order (i.e. for 
n ---$ CO). The averaged energy per degree of freedom is given by 

To evaluate ~ ( t )  we express the RHS of the above equation in terms of the Fourier 
transformed fields & ( t )  to  give (to leading order) 

where Sk(t )  is the structure function evaluated above for n -+ CO. Explicit evaluation 
of (20) then gives 

~ ( t )  = - ( r 2 / 4 u )  t ( r / u ) ( d / 8 t )  (21) 

where the first term is the trivial condensation energy. The second term indicates that  
the energy of the system relaxes to equilibrium as l / t .  This form of energy relaxation 
is suggested by dimensional analysis [9] and has been confirmed in a recent series 
of numerical simulations [9]. These simulations were based on a ‘hard-spin’ model 
(where the vector field is constrained to have magnitude ,/n) which corresponds t o  
taking r -+ CO and U -+ CO with r / u  = 1. In fact one may rederive all the n -+ CO 

results directly from an equation of motion derived explicitly for the ‘hard-spin’ case 
[9]. As can be seen above (and in what follows) the parameters r and U appear in 
the ratio r / u  in all results of interest implying that  the (soft-spin’ and the ‘hard-spin’ 
models are in the same universality class. 

We have now presented the leading order results for the quantities of interest. In 
the next section we shall see that  extending the calculation to  O( l / n )  yields new and 
unexpected behaviour for the two-time correlation function Ck(tl t’). 

3. l /n  expansion: new results 

To extend the results of the previous section requires analysing the O( l /n )  terms in 
the diagrammatic expansion. Relevant diagrams will therefore have v vertices and 
c = v - 1 closed loops thus contributing to  O(nc-”) = O(l /n ) .  Writing 

and 

we find that G L ( t )  and Ci ( t ,  t‘) may be expressed in the following way: 
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la1 16) I C 1  ( d l  le1 

Figure 2. Diagramcontributing to the ‘self-energy’nk(t1, t z )  at O(l/n). Diagrams 
( b )  and ( d )  each carry a combinatoric factor of 2.  

Figure 3. O(l/n)  diagram for the function R k ( t l , t 2 )  of (25) .  

and 

CL(t,t’) = A{Gr(t)GL(t’) + G,”(t’)GB(t)} 
r t  r t ’  

The functions l l k ( t l , t 2 )  and R k ( t l , t z )  are expressed in terms of diagrams and are 
shown in figures 2 and 3 respectively. 

The elements of the diagrams are as follows. A circle represents the zero-time 
correlation of two fields and therefore carries a weight (see (5))  A6i,j6k,k,. A Single 
line emerging from a circle represents the response function calculated to  leading 
order, G,“(t) (see (17)) .  The point a t  which it terminates then corresponds to  a time 
t .  There are two further elements appearing in the diagrams which did not appear in 
the leading order calculation. The first of these is a single line connecting two non-zero 
times t ,t’ where t > t’. This is written as GE(tlt’)  and is the response of a field a t  
time t t o  thermal noise acting a t  time t‘ in the limit of infinitesimal noise. Therefore 
we have 

This is easily calculated by following the derivation of GF( t )  in section 1 but retaining 
a lower limit in the time integrals equal to t‘ rather than zero. Explicit calculation 
yields 

~ r ( t , t ’ )  = = ( t / t ) d / 4 e x p { - ~ ( t  - t )} .  (27) 
G a t ’ )  

The second new element is the wavy line, “ k ( t ,  t’) ,  that  appears in the diagrams con- 
necting two times i ,  t’ with t > t’. This corresponds to the ‘dressed’ vertex. By writing 
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down the usual ‘bubble sum’ of the 1/n expansion we can derive the self-consistent 
equation for the wavy line illustrated in figure 4. This diagrammatic equation corre- 
sponds to 

vk(t,t’) = u6(t - t’) - 2uA dt” vk(t, t“) G ~ ( t ‘ ) G ~ p ( t “ ) G ~ + p ( t ‘ ‘ ,  t’). 
P 

By substituting the form of the functions G r ( t )  and G r ( t ,  t ’ )  into (28) we may easily 
evaluate the momentum sum over p .  Making use of (16) then yields the following 
integral equation for vk(tl  t’). 

vk(t, t‘) = uS(t - t’) - 2r 
k2 (”” - ‘I2)) . 

(29) dt” v k ( t ,  t “ )  exp - ( 2t” 

+ -_.__ - - _ _ _ _  

Figure 4. Self-consistent equation for the wavy line (i.e. u k ( t 3 ,  t ~ ) )  which come- 
sponds t o  (28) .  

The solution of (29) for vk(tr t ’ )  constitutes the most difficult part of this 1/71 
calculation. In fact we have been unable to solve this integral equation in closed form. 
However since we are only interested in the asymptotic behaviour of the system, the 
lack of an exact solution of (29) need not bar us from completing the calculation. 
Progress is made by developing vk(t,t’) as a controlled expansion about the solution 
of a simpler, soluble integral equation. We construct an integral equation for some 
function fk(t, t’) that mirrors (29) as closely as possible, but where the kernel has the 
property K(t”, t’) = K*(t” - t ’ ) .  We can solve such an integral equation by Laplace 
transform methods, and we are then in a position to write down an expansion for 
vk(t,t’) about the function fk(t, t’). 

We choose as our soluble integral equation 

r t  

fk(tlt’) = u6(2 -t’)  - 273 d t ” f k ( t , t ” ) e x p { - R 2 ( t ” - t ’ ) } .  
1 1  

The solution of this equation is easily obtained (by Laplace transformation) to  give 

fk( t l t ’ )  = u{6( t  - t’) - 2rexp[-2r(t - t’)]} exp{-R2(t - t o } .  (31) 

Writing 

v k ( t , t ’ )  = fk(t,t’)Pk(t,t’) (32) 

and substituting this into (29) enables us to develop pk(tr t ’ )  as an expansion of terms 
involving the form ( 2  - t’)’/t. Explicitly one finds 

k 2 ( t  - t o 2  
2t [l + O ( r ( t  - t ’ ) ) ]  P k ( t , t ’ )  = 1 + (33) 
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plus terms of higher order in k ’ ( t - t ’ ) ’ / t .  The key property of p k ( t ,  1’)  is that  the next 
to leading term is quadratic in the time difference. This enables us to  set p k ( t , t ’ )  = 
1 when we are evaluating the above diagrams in the asymptotic regime rt >> 1. 
To illustrate this consider integrating over the time arguments of the wavy line, i.e. 
integrating v k ( t , t ’ ) h ( t ‘ )  over t’ for some general function h(t’). One then finds via 
integration by parts the following relation: 

dt’2rk(t, t’)h(t’) = -k’( t  - t ’ ) ] p k ( t ,  t’)h(t’) J’ 
This implies that  for all leading-order results we may simply set p k ( t , t ’ )  = 1, because 

We now have all the necessary elements to  calculate the diagrams shown in figures 2 
and 3. If one is solely interested in evaluating the new exponent X it is convenient t o  
set the external momentum k = 0 when computing the above diagrams. The results 
of such a calculation were presented in [ 2 ] .  In this paper, however, we present results 
for the 1/n corrections to  the response function and the two-time correlation function 
for general k. 

Given the above ‘ingredients’, evaluation of the diagrams is straightforward but 
tedious. For this reason we shall only present the final results for evaluation of the 
diagrams. Referring back to  ( 2 2 ) - ( 2 5 )  we find that 

d P k ( t ,  t’)/bt’*,=* = 0. 

and 

C,(t,t’) = CP(t, t ’ )  [ 2 y ( t ’ ,  k’t’)  - A l ( t )  - Al( t ’ )  

With reference to  figure 2 :  diagrams ( a )  and ( b )  cancel exactly in the asymptotic 
regime when integrated over the external propagators; A I ,  A’, and A3 are the contri- 
butions from diagrams (e), ( d )  and (c) respectively. Y is the contribution from the 
diagram shown in figure 3. Since the functions Ai and Y have a rather complex form 
we present them in full in the appendix. 

To analyse the functions in the appendix we examine the powers of y that  appear 
in the integrands. We see that each function has a leading contribution of ln(t/to). 
However, the logarithmic contributions from A, and A, are ident,ical which implies 

Therefore there is only one logarithmic contribution to the response function. Evalu- 
ating this contribution (from A l )  explicitly we assume that we may exponentiate the 
logarithm to find 
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where X is given by (2) and the scaling function h ( z )  is the leading-order result 
(exp{-z}) together with 1/n contributions from the A functions. It is important 
to note that the scaling variable k2 t  remains unchanged to O(l /n)  (and presumably 
to  all further orders) indicating that the dynamic exponent z = 2 independent of n. 

The same analysis applies to the two-time correlation function. Now there are 
logarithmic contributions from T as well as from A l .  Therefore we have (for t >> t’) 
Ck(t, t’) = CC(t,t’){I + (a/n)[ln(t’/t,) + In(t/t,) - 2 ln(t‘/t,)] 

+ ( l / n ) F ( k 2 t ,  k2 t ’ )  + O(l/n2)} (39) 
where a is simply the l / n  contribution to A/2, Since L ( t )  = t 1 I 2 ,  the above equation 
may be cast into the form given by (1) (where we have again assumed that we may 
exponentiate the logarithms). 

It turns out that the structure factor Sh( t )  (= C k ( t , t ) )  to O( l /n)  is given by (39) 
with t = t’. We see that the logarithms in (39) will cancel for this case and this implies 
that the structure factor retains its standard scaling form (see (10)) to O( l / n )  and 
presumably to all further orders. The scaling function of the structure function does 
however pick up 1/n corrections as expected. Writing Sh( t )  = ( r / ~ ) ( 8 7 r t ) ~ / ~ g ( k * t )  we 
may express the scaling function in the form 

d z )  = gW(2) + ( l /n)g’(z)  + 0 ( l / n 2 )  (40) 
where gw(z)  = exp(-2z) as evaluated in section 2. By numerically evaluating the 
functions Ai and T we can find the form of g’(z) for various values of d. In figure 5 
we present the form of g‘( z) for d = 1 ,2  and 3. 

* d:l 

z d:2 

t d.3 

0 0 5  1 0  1 5  2 0  2 5  3.0 3 5  4 0  
XI k 2 t  

Figure 5. 
defined in (40) for d = 1 , 2  and 3. 

O ( l / n )  corrections to the scaling function of the structure factor as 

A nice check on the correctness of the form of the A and T is the following. 
We know that summing the structure factor over all k must yield the square of the 
equilibrium magnetization (= r /u ) .  Since this was found to  hold for the leading order 
form of S k ( t )  (see section 2) we must then have 

C S L ( t )  = 0 
h 
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where SL(t) is the 1/n correction to  the structure factor. The proof of this is tedious 
but this stringent condition has been verified using the functions Ai and T given in 
the appendix. 

We end this section by discussing numerical simulations relevant to  the above 
results. A recent series of simulations [9] measured the autocorrelation function 
A(t )  = [$(z,t>$(z,O)], i.e. the correlation with the initial condition, for model A 
domain growth in vector spin systems for various values of n in d = 1 .  Using 
A(t)  = Jddk  C ( t ,  0), the relation Ck( t ,  0) = AGk(t ) ,  and the scaling form (38) yields 
A(t )  - t - ( d - X ) l f 2 .  For d = 1 we expect the above analysis to  correctly describe the 
simulations for n 2 3 since the case of n = 2 is found (by simple analytic arguments 
[9]) to  be anomalous. The simulations verified that X is indeed dependent on n and 
comparison of the measured values of X with the result given in (2)  is surprisingly 
good. Results of similar simulations for d = 2 will be presented shortly [12]. Again 
the results for X are in good agreement with (2) for n 2 4.  I t  has been found, however, 
that  topological structures not present for large n play an important role in the dy- 
namics of d = 2 systems with n = 2 and 3. Further discussion of these more complex 
systems will be deferred to  a future publication [12]. 

4. The role of thermal fluctuations for T < T, 

The above analysis describes a system quenched from a high temperature equilibrium 
state to zero temperature. To what extent are the results obtained valid for the more 
general case of a quench from high temperature to  some finite temperature in the 
ordered phase? To answer this question we must restrict our attention to  the case of 
d > 2 ( d  > 1 for a scalar order parameter) where a low-temperature ordered phase 
exists. We shall consider only the limit n --+ CO. 

A quench to  finite temperature necessitates the inclusion of a noise term in the 
Langevin equation. Therefore we have 

@;/at = (. - k2)4i, - (U/.) #Jk-p-qdlp< + r L ( t )  (42) 
j , p , a  

where the noise is taken to  have a Gaussian distribution with zero mean and correlator 
given by 

( < L ( t ) < i k t ( t ’ ) )  = 2T6,,,5,,k,6(t - t’) .  (43) 

Notice that we denote averages over the thermal noise by angled brackets and we shall 
continue to  denote averages over the ensemble of initial conditions by square brackets. 
Let us calculate the effect of thermal fluctuations on the response function defined by 

By an identical diagrammatic analysis to  that described in section 2 we may derive a 
self-consistent equation for Gk(t) .  We find 
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This may be written as (see section 2 )  

t 

Gk(t)  = exp (- dt’(k2 + A ( t ’ ) ) )  (46) 

where 

A ( t )  + r = U GP(t)’ ( A  + 22’1’ dt’ GP(t’)-’) . 
P 

(47) 

Substituting (46) into (47) enables us to write a self-consistent equation for A ( t ) .  I t  
is convenient, however, to  work instead with the function q ( t ) ,  defined by 

q( t )  E exp (2 1‘ dt’ A ( t ’ ) )  

which satisfies the self-consistent equation 

$ t )  + 2rq(t) = 221 exp( -2p2t )  (A + 2T I’ dt’ q(t’)  exp(2p’t‘)) . 
P 

(49) 

This integro-differential equation may be solved by Laplace transformation methods. 
Defining G(s) as the Laplace transform of q ( t )  we may solve the above equation to  
find 

2 u A J  + 1 
= s + 2r  - 4uTJ 

where 

( L [ z ( t ) ]  indicates the Laplace transform of ~ ( t ) ) .  Explicit evaluation of J’ (with the 
inclusion of a high momentum cut-off I C n l )  yields (for the range 2 < d < 4) 

CI - A C ~ S ’  
= s + cg + 2Tc2sU 

where 0 < v = d / 2  - 1 < 1 and 

S, is simply the angular factor from the momentum integral in (51) and B(+ ,y )  is 
the beta function. Investigation of d > 4 is straightforward, but different ranges of d 
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Figure 6. Contour of integration, in the complex s-plane, used to evaluate the 
Bromwich integral for ~ ( t ) .  For T = 0 there is a pole on the cut at s = -c3. The 
contribution to q ( t )  from the pole is suppressed by a factor exp(-cst) and is therefore 
negligible for large t .  

(4 < d < 6, 6 < d < 8, etc) must be separately treated and will not be considered 
explicitly here. 

Now that we have the explicit form for i j ( s )  we may obtain ~ ( t )  by evaluating 
the appropriate Bromwich integral. Notice that since v is not an integer there is a 
branch cut in the complex s-plane along the negative real axis. We close the contour 
in the left-half plane and deform it around the cut as illustrated in figure 6. I t  is 
easy to  show that there are no poles within the integration contour for c3 > 0. (Note 
that c3 = 0 defines the critical temperature, so c3 > 0 is simply the condition t o  
be in the low-temperature phase.) Writing s = rexp(i8), the real a.nd imaginary 
parts of the denominator in (52) become R = cg + rcos(8) + 2Tc2r" cos(v8) and 
I = rsin(8) + 2Tc2rY sin(v8) respectively. But sin(8) and sin(v8) have the same sign 
for -K < arg(s) < K (since 0 < < I ) ,  so I does not vanish within the contour 
of integration except for 8 = 0. But R > 0 for 8 = 0, since c3 > 0. Hence there 
are no poles within the contour, and the complete contour integral vanishes. The 
non-zero contributions as the contour is taken out to  infinity come from the original 
Bromwich contour and the integral along both sides of the branch cut. Thus the 
desired Bromwich integral is obtained from the integral of the discontinuity across the 
cut. This gives (with the use of (53)) 

2c, sin(vx) 
d t )  = & d / 2  (T + rA)I'(v + 1). (54) 

The main feature is that ~ ( t )  - t - d / 2 .  In other words the form of the response function 
is unchanged in the presence of thermal fluctuations since 

G k ( t )  = 7 ( t ) - ' I 2  exp(-k2t) = t d I 4 h ( k 2 t )  

as found for zero temperature (see section 2). 
Thermal fluctuations for T < T, are thus irrelevant to the asymptotic dynamics of 

the evolving system and their contribution is primarily limited to  a renormalization 
of amplitudes. The leading correction-to-scaling associated with T can be also be 
obtained from the Bromwich integral. For large 1 ,  the leading correction t o  (54) is down 
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by a factor of order T / t Y ,  i.e. T / L ( t ) 2 Y .  This can also be seen from direct inspection 
of ( 5 2 ) .  Thus the correction-to-scaling exponent associated with temperature is 2 v  = 
d - 2 ,  in agreement with elementary arguments [7]. 

Equation ( 5 2 )  also enables us t o  obtain the solution a i  the critical point, by set- 
ting c3 = 0. Then the dominant small-s behaviour is $(s) N ( c 1 / 2 T c 2 ) s - ” ,  im- 
plying a large-t behaviour ~ ( t )  - t - ( l - ” ) ,  as may be verified by explicit evalua- 
tion of the Bromwich integral for this case. Thus, a t  the critical point, G k ( t )  - 
t ( 4 - d ) / 4  exp(-L2t), in agreement with previous results [4,5]. 

Finally, T > T, implies c3 < 0. Then there is single pole, on the positive real axis, 
within the integration contour (the Bromwich contour must, of course, be to  the right 
of this pole). This leads to  exponential growth of V ( t )  and, therefore, exponential 
decay of the response function, i.e. a finite relaxation time. The same behaviour is 
obtained a t  any non-zero temperature for d 5 2 .  For d < 2 ,  ( 5 2 )  still holds, but with 
(taking km + 00) c1 = 1, c3 = 2r  and c2 = - t&dB(d/2 - l , d / 2 ) / 2 d / 2 .  Since c2 is 
now negative, $(s) again has a pole on the positive real axis, leading to exponential 
decay of the response function. Hence T is a relevant perturbation, as expected, for 

In summary, we have shown that temperature is an irrelevant variable in the 
This is as expected on 

d < 2 .  

ordered phase, with correction-to-scaling exponent d - 2 .  
general grounds [7], but i t  is nice to  see it emerging cleanly from the model. 

5. Long-range initial correlations 

In this section we shall analyse the effect of long-range initial conditions. One phys- 
ically realizable situation in which this is relevant is a quench from the critical point 
into the low-temperature phase. The role of long-range initial conditions in quenches 
to  the critical point itself has been discussed elsewhere [ 5 ] .  

As before we shall concentrate on the case of a quench to  zero temperature for 
convenience. We expect the results to be valid for any temperature within the ordered 
phase. This was shown to be the case for short-range initial conditions in the analysis 
of section 4. The main result of this section is that the exponent X governing the 
dynamics of both the response function and the two-time correlation function does 
not pick up any corrections at  O ( l / n )  for any finite U ,  where U parametrizes the 
long-range initial correlations via 

In the context of a 1 / n  expansion this would imply that the exponent X is discontinuous 
in the limit of U + 0. However a renormalization group analysis [13] reveals that  in 
fact there is a smooth crossover in behaviour a t  a critical value of U which is finite 
and positive. In fact this critical value of sigma is given by 

U, = d - 2XSR ( 5 6 )  

where A,, is the value of X calculated to O ( l / n )  in section 3. In this section we shall 
find that in the region of U > U, (where long-range correlations are relevant) X has 
the value 
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The calculation of the response function etc follows an identical path to  the cal- 
culation described in sections 2 and 3. The  only additional difficulty is that  most 
momentum sums to  be evaluated will include fractional powers of momentum in the 
summand. These can be evaluated at  the expense of introducing an auxiliary integral. 
Therefore we use the identity 

So following the details of section 2 we obtain the following results in the limit of 
n 4 00: 

G,(t) = ( t / t 0 ) ( d - " ) / 4  exp(-k2t) (59) 

Ck(tr t ' )  = Ak-" ( t t ' / t i ) (d -u ) '4  exp{-k2(t + t ' )}  

and 

Sh(t)  = Ak-" ( t / t o ) ( d - " ) / 2  exp(-2k2t). 

The short-time cut-off t o  is given by 

where 

To extend these results to O ( l / n )  we need to calculate the diagrams shown in 
figures 2 and 3 .  This time the circle has an extra momentum-dependent weight of 
k-" and the single lines emerging from a circle are given by (59) above. A single line 
connecting two different times may be calculated as in section 3 and is again given by 
the ratio of the response functions at  the two times. The wavy line also needs to be 
calculated again now that we have long-range initial conditions. It turns out that  U 
first appears in the quadratic part of p k ( t l  t ' )  (see section 3) and since we take p = 1 
in the asymptotic regime we see that the form of v k ( t )  is unchanged for U non-zero. 

We shall not present detailed functions for the 1/n contributions for this case. It 
is sufficient to  say that the calculation of such terms follows exactly the same route 
as in section 3.  We shall discuss the main results of the 1/n expansion for this case 
though. For the short-range initial condition (SRIC) case in section 3 we found that 
all diagrams had a leading-order logarithmic contribution. I n  terms of the response 
function this led to  a surviving logarithm (from figure 2 e )  which was the source of 
the 1/n contribution to  X-the new exponent governing the dynamics of the response 
function and the two-time correlation function. In the long-range initial condition 
(LRIC) case figure 2 ( a ) - ( 2 d )  all give logarithms and they cancel mutually as in SRIC. 
However the diagram 2 ( e )  does not give a logarithm for finite U. This immediately 
implies that  the 1/n corrections (and presumably all furt81ier corrections) to  the leading 
order response function (see (59)) are trivial in that they simply change the form of 
the scaling function. So we have 

Gh(t )  = ( t / t 0 ) ( d - u ) / 4 h ( k 2 t ) .  (64) 
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From the definition of X this implies the relation given in (57). As mentioned above 
this might lead one to  suspect that the exponent X is discontinuous in the limit of 
U + 0. This is not the case. An RG calculation [13] reveals that  there is a critical 
value of U such that for U < U, the system is dominated by the short-range fixed 
point and X = A,, given in (2).  For U > 6, the long-range behaviour dominates 
and X acquires the value given in (57). The value of uc is such that the crossover in 
behaviour between the short-range and long-range regimes is continuous. 

Evaluation of the structure factor produces the result given in (61) for n -+ CO. 

However the evaluation of the 1/71 terms to  s k ( t )  yields two types of correction. The 
first (which arises from the 1/71 response functions) has the same form as the leading 
order result. The second term (which arises from the diagram shown in figure 3) 
however is finite in the limit of IC + 0 and is of the standard short-range form. So we 
have 

S k ( t )  = (A /k ' ) ( t / t o ) (d -u) /2g t (  k 2 t )  + (A /n) ( t / t o )d /2g2(  k 2 t )  + O( l /n2)  

where g l ( z )  and g2(z)  are finite in the limit of I + 0. Therefore the structure factor 
has both short-range and long-range contributions. Working to  all powers of I/. will 
then yield a form for the structure factor composed of these two types of contribution, 
i.e. 

where again the two scaling functions are finite in the limit k 2 t  + 0. Note that  
if we recast (66) into the standard scaling form (10) then in the limit k2 t  --+ 0 the 
structure factor will be dominated by the first term on the RHS of (66)-the long-range 
contribution. 

6. Conclusions 

In this paper we have studied in some detail the dynamics of the n-component 
Ginzburg-Landau model following a quench from the high-temperature to  the low- 
temperature phase. Our analysis is centred around the 1/n expansion and we have 
restricted our attention to  the case of model A dynamics (i.e. non-conserved order pa- 
rameter). One of the overriding reasons for studying the 1/71 expansion for this model 
is the lack of any other small parameter in which to develop a perturbation expansion. 
This is in contrast to  critical phenomena where one may develop an expansion about 
the upper critical dimension. It is of interest that 1/n expansions at  the critical point 
usually give rather poor results whereas the results we have obtained in this paper 
to  O ( l / n )  are in surprisingly good agreement with results obtained from numerical 
simulations (for d = 1 and 2) [9,12]. for values of n = 3 , 4  and 5. 

Without question the most interesting result obtained from this calculation is the 
new exponent that  arises in the description of correlations between fields at diflerent 
times. We have presented a new scaling form for the two-time correlation function (in 
equation (1)) and also the form of the new exponent X to O( l /n)  (in equation (2)).  
The structure factor presents no new surprises a t  O( 1/71) in the sense that it retains the 
standard scaling form (10) and also equals the square of the equilibrium magnetization 
when summed over all momenta. As mentioned briefly in the introduction the standard 
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scaling form for the structure factor fails for the case of a system with model B 
dynamics quenched into the low-temperature phase (at least in the limit of n + m), 
as shown recently by Coniglio and Zannetti [6]. In that case one observes ‘multiscaling’ 
in the asymptotic regime. This means there are two length scales characterising the 
dynamics of the system which differ marginally (logarithmically). 

The 1/n expansion was performed for the case of a quench to  zero temperature for 
convenience. We expect the functional form of the physical quantities calculated to  
remain valid for quenches t o  any temperature less than T, since the zero temperature 
fixed point controls the entire ordered phase (i.e. T < T,). This was explicitly demon- 
strated in section 4 where we showed that the response function a t  finite temperature 
in the limit of n + 00 retained its zero temperature form. 

In general one may envisage a ‘triangle’ of possible quenches. The case of a quench 
from the high-temperature phase to  the critical point has been studied in detail re- 
cently [4,5]. The main body of this paper is concerned with a quench from the 
high-temperature to  the low-temperature phase. One can ‘complete the triangle’ by 
considering the case of a quench from the critical point into the low-temperature phase. 
This implies that  there are long-range (power-law) correlations built into the initial 
state. This case was studied (again using a 1/n expansion) in section 5. It was found 
that a crossover occurs between short-range and long-range behaviour a t  a critical 
value U, of the parameter U that  characterizes the nature of the initial correlations. 
We stressed in section 5 that  the 1/n expansion has to  be augmented by a RG-type 
analysis [13] to  establish the true nature of this crossover, i.e. t o  determine the value 
of U,. 
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Appendix 

In this appendix we present the functions Ai and T referred to in section 3. 
The functions in (35) and (36) are given by 

d2(  1 + x2) 
+ 3 x ( l +  z ) ~ (  1 - cry) 

where cr = a(.) = (1 + x)/3; 

dz( 1 + x 2 )  
+ x ( l  + x)(3 - x - Py) 
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where p = p(z )  = ( 1  - x)'; 

+ 
X 

+ 
Finally 

where t > t' 
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